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Abstract
The algorithm present a dynamic programming problem based on the
destinations: at destination j, 2< j <n only the associate costs can be

used. The main problem of the algorithm is to find the polyhedrons
vertices at the each iteration to result the efficiently solutions for the
multi objectives transportation problem.
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An approach based on dynamic programming is used to find an algebraic
representation of a polyhedron in objectives space associate to a transportation problem
with K linear objectives. This pol yhedron has the same efficient structure just like the set
of possible objectives values and, in addition, every itsvertex is efficient.

The algebraic representation of this polyhedron has the following form

{ye Rk|Hy2Ua+Vb}, where H,U,V are matrices independent of vector a (the

availabilities vector) and vector b (the applications vector). The procedure is illustrated
by a numerical example.

1. INTRODUCTION
The restrictions for the classical transportation problem of only one merchandise

with m sources and n destinations are characterized by a quantity a" avalable in
sources i, i=1m and a guantity b)) requisite to destination |, j=]71.



The problem is considered baanced (in eguilibrium). We will consider X?) the
determination variable representing the transported quantity from sourcei, to
destination j . Therestrictions are;

n . . -
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X; >0,i=1m, j=1n 3)
we used notation a(i),b(”,x(j') to introduce | index, | =1k, which represent the
objective.

Often in a trangportation problem, there are some obj ectives that enter in conflict,
incommensurable, which have to be optimized according to restrictions (1), (2) and (3).

In seque, is presented the case when exist k>1 objectives which can be
expressed as alinear combination of aggregate (assembly) variables.

Severa authors ([2], [4], [5], [6]) have considered transportation problem in this
general setting, and other authors ([1], [3], [7], [8]) have considered the problem in a
setting where some linear objectives were not considered.

Certainly, when objectives are linear, multiobjective transportation problem
represent a specia case of general multiobjective linear programming problem.

(MOLP): Minimize C-Xx with restrictions Ax=b, x>0, where C is the objectives

k-q matrix, A istherestrictions p-qg matrix, andbe R".

Despite this, as in the case of a singular objective transportation problem, the
unique structure of transportation restrictions matrix, lead to agorithms for solving
multiobj ective transportation problem, a gorithms which are more speciaized than those
devel oped for the general problem (MOLP).

Three such agorithms belong to Diaz [2], Gupta B. and Gupta R. [4] and
Isermann [5]. All of them have the advantage of a special structure of transportation
restrictions matrix and al imply a simplex analysis of restrictions set, and the algorithms
givenin[2] an [5] first enumerate the extreme Pareto optimal points, then identify al the
optimal Pareto edges and faces of the restrictions set. Such asimplex analysisis a natural
approach for solving multiobjectives linear programs and it is effective in many
problems.

An dternative analysis approach of general multiobjectives linear problem was
developed by Dauer and Sdeh [9], [10]. In this approach they emphasize the analysis of

objective set  y=C[X], more than the andysis of restrictions set
X ={X€ Rq|A-x=b, sz} . The first advantage of analyzing y and not X is that

the number k of objectives it is much less than q the number of variables, and y have
less fagade and extreme significant points than X . Moreover, from practical point of



view, a decision factor is fundamental influenced by the considerations about the
obj ectives space than the considerations about the restricti ons space.

Therefore, an analysis of the objective space of linear multiobjectives programs
has the advantage to be more easily and to provide a much better understanding than an
andysis of restrictions space.

To achieve a complete analysis of objectives space is necessary an algebraic
representation for the set y . Such a representation was devel oped for (MOLP) by Dauer
and Saleh [9] and later was modified in [10] to achieve an algebrai c representation for the
polyhedron § = y+ R

We noticethat § have the same efficient structure like y, and in addition have
the properties that al his extreme points are efficacy. In the present problem, the special
structure of transportation restrictions matrix is used to achieve an aternative variant of
algebraic representation of polyhedron { associate to a multiobjectives transportation
problem. In particularly, the matrices H, U, V are constructed such that y have the

T
representation yz{ye Rk|Hy2Ua+Vb}, where a:[a(l),...,a(m)] and
b=[b,..b" ]

The construction technique for the matrices H, U and V is achieved in an

iterative manner using a forward dynamic programming approach who require n—1
iterations. The expression “forward dynamic programming” is justified by the reason that

theiteration j, j=2,n dependsjust on the costs associate to destinations 1,2,..., j . A
consequence of this fact is that the matrices H, U and V constructed by the algorithm

are completdy independent of vector a and vectorb. Other consequences used in
construction of H, U and V arediscussed in Observation 6.

In sequel, at section 2 areintroduced the main notations and is given an outline of
construction algorithm for H, U andV .

In section 3 is shown that the algorithm from section 2 determine, in fact, the
desired representation for . In section 4, is given a numerical example to illustrate the
algorithm, and in sequence 5 are given some concl usive observations.

2. THE ALGORITHM OUTLINE
The purpose of this section is to outline (sketch) the agorithm used in

construction of the matrices H, U and V. We start to spedfy the used vectorial

notations and the notations relating to the structure of the transportation problem that we
use here.

- The r -th component of the column vector v is V('), and v' denoted the transpose of
'

- Given two vectors v, and v, we have v, <v, ifv\) <vi), (V)r and we have

V,;<#V, if v, SV, andVv, #V,.



- The symbol e is used to note the vector with al component equal with 1, i.e
e =1 (V)I‘ . The number of €’s component is that number who make the expression

m . h )
vaid. E.g., to indicate Za(') :Zb“) we may write €' -a=¢€'-b. Analogue, the
i=1 j=1
symbol O isusedto notethelineor column null vector or the null matrix.

- The symbol X is used to note the decisions variables vector for the transportation
praoblem.

By convention, X is patitioned as XTz[xlT:XZT:...:x:], with

XjT :[xﬁl),xgz),...,xﬁm)], j:]?] i.e X is the decision vector associate to with
destination . The transportation restrictions matrix is noted with A and has the
dimension (m+ n)>< m-n and is partitioned like this
[ Do I
A:{ . . . ]Where | isthe unit matrix with mxn rows and
Q : -Q, i - i —Q

columns and Q; is the matrix with al elements 1 on j-th lineand O in rest (mxn

rows and columns).
- The b letter is used to note the availahilities and applications vector and it is partitioned

likethis: b =[a"i-d" ], with &' =[a”,..,,a" | and d" =[d®,...d" |. At last,
the letter C is used to note the objective matrix of dimension kx(m-n) and it is
partitioned like thisC=[C,:C,:..C ], with C, the “cost” matrix associate with

destination j , | =J?1 of dimensionk x m.
With this notations, the linear multiobjectives transportation problem (MOTP)
can be expressed as follow:

(MOTP): Minimize Cx corresponding toxe X , with X ={X€ R"‘”|Ax=b, XZO}.
Next, we will be using both representations of X . Because the central object is the
objective variables set, is considered Y = C[x] = {y e Y|(3)x e X sothaty = C-x} and
is noted with E(y) the set adl efficent point of Y, ie
E(y):={y € Ydoesnot existy € Y withy <= y}.

- Wedefine §:=Y +R" :{y+ z‘er, ze Rk, 220} and observethat:
AE(Y)=E(y);

b) any extreme point of ¥ isefficient.

These two remarks suggest that the achieving of a linear inequalities system to
determine ¥ may be more useful in (MOTP) analysis than the achieving of a system to

determineY .



- In this moment, is sketched an construction algorithm for matrix H, U and V such
that §={yeR"|Hy>U-a+V-b};

- It is emphasizing that the agorithm require €' -a=¢€'-b. Thecase €' -a>e"-b will
be discussed in Observation 3.6 (c).

THE MAIN IDEA OF THE ALGORITHM
We defined iterative a sequence of n—1 polyhedrons v,,...,i,, where v,

depends on the matrices C, and C,, and for j = ﬁ s depends on the matrices C;
and C; and on the vertices of the polyhedrons v, ;. For al j = 2,n, the vertices of s

are used to define the matrices H[”,UM,V[” such that the desirable matrices H, U

and V that describe Y are HU! Ut ang v [T,
Before we precisely define the notations used in a gorithm, we notice the fact that
the main caculus effort is the enumeration of the vertices of the polyhedron v,

j=2.n.
There are known various methods for finding al vertices of convex polyhedral

sets. In sections 4 and 5 will be discussed the cal culus aspects of the d gorithm.
In sequd, is presented the notations used in this a gorithm.

I. The definition of the polyhedron Vi, ] =2,_n:

Le Dj, j =2,n,a nonnegative gxm matrix (the precise definition will be given in
VII, and dimension ¢; is explicated in I1l). The polyhedron v/, associated to Dj is
defined like this:

v, :={[hT,uT,ﬂ] e RY"™hT. D, +u">p-e',h’ ~e=l[hT,uT,ﬂ] 20} (4)

I1. The definition of thematrix[Hj :UJ. :vj], ] =2,_n:

Let Df,ulT,ﬂJ""’[hT-’urT-’ﬂj] the vertices of the polyhedron . The matrix
[Hj U, :vj] is defined as a rjx(qj+m+1) matrix which has as r-th row
[ T,urT,ﬂr]. We notice that [Hj U, :vj] is a nonnegative matrix and each of his

rows has a most m+1 positive eements. In addition, because the matrix rows
[Hj :UJ. :vj] are vectors from wj,wehave:

T : A -
H;-D;2-U;+v;-e, j=2n ©)
I11. The definition of the matrices H'! and UU, j =1,n.



We remind that Dj isa g, xm matrix, which will be defined in VII. Now, is

sufficiently to say that q; ="l for j= ﬂ with r, = k. Taking all theseinto account,

we give the next definitions:
The r; xk matrix H is defined as:

m_ )=t
HY = — 6
H U2 (6)
with | isthe kxk unit matrix.
The r,xm matrix U is defined as:

, C j=1

p_ )1
v _{H.-U[H]-U j=2n 0

] J ’

IV. Thedefinition of the r,xm matrixCEp], j =2,_n, p=1j-1.

C[p] _ Cj -Gy p=1§1J:H

J

(8)

[p-1] _9 =2
H,-C""+U,, p=2]-1 j=3n
if and only if we have:
[Pl _ pyqlP] [P] _1 i i _ 2 n
Cj =H «CJ.—U , p=1j-1, j=2,n (8b)
V. The definition of the vectorc, , j=2,n.

1 , with the infimum is

C; isdefined as the infimum of the column vectors of CEj'
considered with respect to natural order from Euclidean r,_,—space, i.e. ¢; <C (V)c the
column vector of Cj[j'l], andif c<c (V)c then c< c .

VI. The definition of the r; x j matrix V[”, ] =J?1.
vl Oj=1
'_{[Hjcv[j'l]iH,»C,»Jer], i=2n )
with O the null vector from R¥ .
VII. The definition of the r,xm matrix Dj , j=2,n.
D, :Clil—¢ € (10)

Taking into account the definition of c;, we notice that D, is a nonnegative
matrix. No negativity of the matrixD; is not essentialy for the agorithm, but is
appropriate when we cal culate vertices of pol yhedrony; .



3. THE REPRESENTATION OF Y

In this section, we establish that Y have the representation:
Y={yeR"|H-y>U a+V-b},with H=H", U=U" and v =VI".
Proposition 11f yeY , then y verify Hy>U -a+V -b.
Prove. Since ye\?, we have (3) Xe X, such tha y>C-x. The objective vector
C- X may be written as follow:

Cx:icj > +c:1.a+i(c:j -C,)-x =cl.a+ic,[l].xj .
j=1 j=2 j=2

Thus, using notati onsHY = | , uld = C andvV =0 , we have;

HY. y>ul a vl o S o x

]
j=2

11)
Also, we have:

cll.x, = (Cgl] -, ~eT)~ X, +C,e - X, = D,x, +¢,d"? (12)
In addition, using (5) for j = 2, we have:

(H,D,)-x, 2(—U2+v2-eT)-x2 =

=-U,%,+V,-d? >-U,a+v,d?+> U,x (13)
=3
and, from the last inequality we deducethat U,x, > O.
Using (11), (12) and (13) we have:
Hy - HEy = (HUE -, )-a+ [ HVY G + v, |- d®,d® |

T n
+ (H2 ~CEl] +U2)x.

j=3
Now, with notation givenin (6), (7), (89) and (9), we have:

HE. yZU[2]~a+V[2] ~[b(1),b(2)}T +Zn:CEZ]-XJ. .
j=3
Repesating this reasoning, we have:
H.y>ul.a+VvI".b andhence H-y>U-a+V-b.

In propaosition 4 we give areciprocal of proposition 1.
First, it is useful to prove next lemma and to introduce a new definition.

C
Lemma 2 Supposethat y € R* and the system [hngT}‘|:A:|ZO, [hT’gT]Lﬂ<O

[hT,gT]ZO, heR*, ge R™" haveasolution [hg,gg].Then h,#0.



Prove. Suppose that h,=O. Then the systemg'-A>0, g'-b<O, g>0,

m+n . T T A
geR™", have a solution. Therefore, the system [g ,Z ] | =0,

[gT,ZT]{g}<O, [gT,zT]zO, geR™", zeR™ have a solution. Thus,

according to Gae’s theorem of linear inequalities alternative, the system

—I
VII1. The definition of the polyhedron®, , j = 2,n.
The polyhedron @ ; associate with the matrix D, is defined through:

(I)j — {[hT,UT,&,ﬂ} c Ryi,1+m+2

A b
{ } X< {O} ,Xe R™ don’t have a solution, and therefore X = ¢ . Contradiction.

h'-D,+u'+a-€e' 2 f-¢,
(14)

hT.eT:l,[hT,uT,a,ﬂ}ZO}

In the following observations, we emphasize some properties of @, and his
relationswith‘Pj.
Observation 3
a) If [hT,uT,a,ﬂ] isavertex of @, then a = 0. To provethis fact, we observe that if
a >0, then we can write:
1
E[hT,uT,a—ﬂ,o]+ [h"u", e+ B,28], daca o > 3
[hT!uT!a!ﬂ}:
[hT,uT,Za,aJrﬂ] daci O<a <

NI NP

%[hT,uT,O,ﬂ—a}r

b) There is a bijection between the vertices of @, and ‘¥’ defined in (4). In particular,
[hT,uT,O,ﬂ] isavertex of @ if and only if [hT,uT,ﬂ] isavertex of ¥, .

¢) The extreme radius of the polyhedron®,, j=2,n, ae the rows of the

(m+ S)x(rj_l+ m+ 2) matrix



d) If [hT,uT,a,ﬂ] € @, then he written as a convex combination of vertices of @,
plus a nonnegative linear combination of extreme radius of @ ;. Thus, according to the
previous observation and the definition of the matrix [H J. ,Uj ,vj] ,there exist ze R"
weR™ and y,5,7 € R with z' -e=1.

[ZT,WT,}/,é',n]ZO and

[hT,uT,a,ﬂ] =z' .[Hj :Uj:O:vj]+[wT,y,5,77]- E, (15)
In sequel, we provethereciproca of the proposition 1.

Proposition 41f ye R* satisfied Hy>U -a+V -b, then yeY .

Prove Is proving that exist a Xxe X such thaa y>C-x, i.e the system

C y
A |-x<|b |, xeR™ hasasolution.
-1 0

Let suppose the contrary. Then according to Gale’s theorem, is shown that exist
h, e R* and g, e R™" such that

[hy.g; >0
hf-C+gl-A>0 (16)
hyy+g, -b<0 17)

According to lemma 2, we may suppose, without loosing generdity,
thath) -e=1.

Let gp = [uo,vg] , where U, € R™, v, € R". Then, from (16), we have:

he -C,+Uy —Vg-Q, 20, j=2,n, henceit follows that:

hy-C,+uy—vi).€' >0, j=2n (18)
Let p,eR™, pr=h -C +ul—vV.e". Then, p>0 and from (18) follows

that

g «(C;—Cy)+ p+vy € 2 vy ', j=2,n (19)
Using (19) with j =2, wehave:

hOT(Cgl]—cz-eT)qL p§+(vgl)+(rﬁ-c2)+)-eTz(vf)z)+(h§-c2)_)-eT (20)

where t* = max {t,0} and t~ =max {-t,0} .
From definition of the matrix D, (given in (10)) and of @, (from (14)), (20)

prove that [hg pg,vgl>+(rg.c2)+ ,ng)+(l"€«c2)_}e¢)2.



Now, according to observation 3 and equation (15), there exist z, e R",
w, e R™, and y,,8,,17, € R satisfying:
ZzT'ezl’ [22T1W2T1721521772:|20’

hy =2 -H,, pp=2 U, +W,+y, € (21)
and
V%)+(hoT'C2) 252+772’Vé*’(hoT'Cz)i:ZzT'Vz"'}/z*'é‘z (22)

The  equations  (21)  and pi=h-C+u -vW.e"  prove tha
z, (H,C,-U,)=-u; +w, +( v +;/2)~eT , and hence it follows that:
2 He -y
22T~U[2]=—ug+W2T+(vgl)erz)eT (23)
At this moment, with equations (22), replacing hoT and pg from (19), we may have:
22T~Cj[2]+W2T+(vgl)+;/2)~eT2v(0”«eT, j=3n (25)
Using inequalities (25) for j =3, we have
z, D, +W, +( Wiy, +(z§g)+)T > O(vﬁf) +(22T(:3)7)-eT
and, hence:
2w () W (Ze) |,
Repeating this reasoning, we establish that exist [znT,WnT,;/nﬁn,nn] e R+m3

who satisfy:
3 H=7 H" =N,

Zlu=zul=z .yl =—ug+wnT+[ vgl)+2yjj~eT (23)
i—2

and

z'V = z:«V[”} -

n (24)
= O’VE)Z) _(Vg)l) +72)+7721VE)3) _(Vg)l) +7 +73)+773’---’V£)n) _[Vg) +Z7jj+nn:l

i—2
Now, since y satisfy H-y>U-a+V:b and z >0, it follows that:
Z-H-y>Z -U-a+2 -V-b. Thus, according to (23') and (24'), we have:



which imply hjy>-uja+v,b, relation that contradict (17), therefore the

demonstration is compl ete.
Combining propositions 1 and 4, we achieve the most important result:

Theorem 5 The polyhedron Y associate to multiobjective transportation problem
(MOTP): Minimize C-X corresponding to XG{XGRmn‘AXZb,XZ 0}, with

d’ :[aT : bT]e RM™N satisfyinge' -a=¢€"-b, has  the  representation

\?:{yem"\Hyzu ~a+V-b},WhereH =HI", u=ul", v=vl"

The following observations emphasize that the construction manner of the
matricesH , U and V has important implications in applications. In particularly,
observation 6 (a)—(c) indicate the fact that once constructed, these matrices may be used
even then when some parameters from the problem are changed.

The observation 6 (d) emphasize that in implementation of the algorithm it should
be considered priority the order of destinations such that to minimize the necessary
caculations to update matrices H , U and V when the costs are fluctuating.
Observation 6
a) Suppose that that the matrices H = H™ , U =U v =" were constructed. Since

these matrices are independent of de[aT:—bT], it follows that if
d,’ =[aoT :—bOT]e R™" is any other vector that satisfy €'-a, =€'-b,, then the
polyhedron \70 associate with (MOTPg): Minimize C-X corresponding to
XG{XG]R"'”‘AX:bO,XZO}hastherepreaentation:V:{yeRk‘Hy2U~ao+V~bo}

b) Again, suppose that the matrices H, UM and V" were constructed. Moreover,
suppose that we add the n+1-th destination with the costs matrix C Then the

n+l*

polyhedron Y, associate with (MOTPy): Minimize [C:C,,]-X corresponding to

XG{XGRm+m Alx:dl,xzo}, where A is (m+n+1)x(mn+m) transportation

restrictions matrix and le:[alT:—blT]eRW”+l saisfy € -a =e'-b has the
representation Vz{yeRk‘H[””]yzU[””]~al +V[”+1]~b1}, where HI™Y, U™ and

V™ are achieved maki ng an extra algorithm iteration. We mentioned here that the n-th



reactualized matrix C_,; can be most easier obtained using relation (6). In particular,
cll — gl ,le_U[n}_

n+1
c) Just like in the cases @) and b), we suppose that H, U™ and VI were constructed.
If is given an application of availabilities vector [azT :—bZT]e R™" which satisfy
e'-a, >e'-b,, then the efficiency set E(Y,) associated with the problem (MOTPy):
Minimize C- X corresponding to

n . RS
XG{XZ(XI,X;,...,XI)GRW] ij <ay,e' X >b£’), j :ln,xzo}

=1

itiscertainly E(\?l) , Where \71 is the polyhedron associated with (MOTP,) when C_, is

anull kxm matrix, 8’ =a, and d," =[b2T,eTa2—eTb2] . Just like we specify inb), Y,
may be obtained only by a single iteration of the algorithm performed in addition.

d) We natice that for 1< j<n, H U [T ang V1! depends only by the costs matrices
C,.C,,...,C,. Hence it follows that is useful to order the destinations by “robustness”

decreasing of the costs matrices associated, i.e destination 1 should be chosen as
destination for which the costs are the most little probably to change, while destination n
should be chosen as destination for which the costs are the most probably to change.

In parti cular, we suppose that the cost matrix associated with only one destination
is submissively to changes, whil e the costs matrices associate to al the others destinations
will remain fixedly by any by. In this case, it can be arranged such that the destination
with variable cost to be treated in the last iteration of the algorithm and, in this way, every
time the costs associated with this destination changes. Only one iteration of the

algorithm is necessary to achi eve the representation of the polyhedron Y.

4. EXAMPLE
Consider a multiobjectiv linear transportation problem with n=m=k=3,

where the available resources vector is @' =[100,125,75], the application vector is
b" = [60,80,160] and the costs matrix is C =[C, : C, : C,], where:

3 4 -1 1 2 6 -1 5 4

C=l25 3|, C,=|46 -1, C,=[3 4 -3
7 1 5 7 7 7 5 1 8
[HZZUZZVZ]

oORr Rk
N =Ne=)
o
©
©
oo0o
o ©0o



0 1 0.0 O 51 5
0 1 0:0 0 O0: 0
0 0O 1:0 0 O0: 0
0 0 1:{2 0 0 2
0 O 1:6 0 4: 6
5 9 0:0 0 O0: 54
4 14 § L 14
2 3 070 3 018
5 5 § 5 . 5
0 1 3:0 0 0: 3
4 4 2
0 6 1:0 0 34:36
7 7 77
4 0 9ix 0 0154
13 13 | 13 L 13
3 54 970 0 037
97 97 97 | . 97
Table 1.
Using these data, we exemplify the algorithm sketched in section 3.
Step 1
Let j=2.
Step 2
-2 -2 7
Compute Cj[j'l}, Cgl]:Cz—Cl: 2 1 4.
0O 0 2
Step 3

Compute ¢; and D;. c; is the infimum of the column vector of the matrix

Cj[j'l]. Thus, C, =[-2,-4,0]. The marix D, is defined as D, =Cj[j'l]—cjeT.
0 09
Therefore, D,=|6 5 0].
0 6 2
Step 4
Compute [Hj ‘U, :vj] by finding all vertices f the polyhedrons ‘¥, defined in
(4). ¥, isdefined by afour equation (inequalities) system with seven unknowns. It can

be verified that there exist just 14 vertices of ¥,, and hence it follows that
[H,:U,:V,] isal4x7 matrix. Therows of this matrix are given intable 1.



Step 5

Compute HUT ull ang v according to formulas (6), (7) and (9). For j=2,
we natice that HA =H, - H¥ =H,.1 =H,, UP=H,.UF —U,=H,.C,-U, and
e :[HZ VH:H,c, +V2] =[0,H,c, ++V,]|. Therows of these matrices are given in

table 2.
Step 6
If j=n,gotoStep 7. Else, consider j = j+1 and goto Step 2.
For the given example, we take j =2 < 3= n, hence we repeat the steps 2-5 for

j =3 and go to Step 7. The columns of ng}

, ¢; and D, are givenin table 3. Then, we
notice that the system that defines ¥, has 4 equations (inequalities) with 18 unknowns.
It can be veify that there exist 119 vertices of ‘¥,, and hence it follows that

[H,:U,:v,] has 119 rows and 18 columns. With this matrix, it can be compute H',

U and VI accordi ng to formulas (6), (7), (9) because of large dimensions we admit
the writing of these matricesin an iterative manner.

H? | R v!2
1 0 0 3 4 1 0 -2
1 0 0 6 5 -1 0o 7
o 1 0 2 4 3 0 2
o 1 0 2 5 =2 0 1
o 1 0 2 5 3 0 -4
o 0 1 7 1 5 0 0
o 0 1 5 1 5 0 2
o 0 1 11 1 0 6
5 9 B/ 65 2 o 2
14 14 14 14 14 14
23 Lo, 7 0 2
5 5 5 5 5
o L1 3 B, 18 o L

4 4 4 4 2
o & 1 3 u o 2

77 77 7 7
4,8 2125 4 o %
13 13 13 | 13 | 13 13
M 9 273 415 173 40
97 97 97 97 97 97 97

Table 2.



Step 7

Le H=HM", u=ulv=v" The sysem H-y>U-a+V-b is the
wished representation of Y . We notice that, this last system may have many redundant
inequalities which can be omitted before determinate the efficient structure of Y.

In our example, the original inequalities system which defines Y isreducetoal2
inequalities system given in table 4.

The extreme points set of Y (i.e. the efficient points set of \?) can be now

determined applying any method from [11], [12], [13] or finding al efficient extreme
points of the multiobjective linear transportation problem.

Minimize | -y corresponding to ye\?.
Using ADBASE [14] to solve (MOLP) for the given example, we find the
following 7 extreme points:

y; =[1225,670,1280], y! =[1200,675,1300], y! =[900,795,1180]
y! =[925,790,1160], y. =[685,1030,1160], Y, =[360,1095,1420]
y! =[285,1185,1525]

C[Z] (o D,
-4 1 5 -4 0 5 9
5 10 5 5 0 5 0
1 0 6 0 1 0 6
1 -1 5 -1 2 0 6
1 -1 0 -1 2 0 1
-2 0 3 -2 0 2 5
0 0 3 0 0 0 3
4 0 7 0 4 0 7
u 4 3 u 0 7 3
14 14 14 14 14 14
-1 2 2 -1 0 7 3
5 5
5 19 -5 o 1 1
4 4 4 4 4
i % s 100 @
7 7 7 7 7 7
20 4 4 4 6 0 43
13 13 13 13 13 13
10 2 197 -0 0 8 2
97 97 97 97 97 97

Table 3.



Noting these extreme points which are obligatory for various inequations, the
efficient structure of Y, and hence of Y can be determined.

In our example, E(Y)=Cy{Vi ¥ Yar Ya} U Co{¥ar Yar ¥or Y} U Co { Yo Vs } -
where "c, " nominate the convex part.

y" > 285 y? +y® >1950
y? > 670 2y +5y1? > 5775
y? >1160 4y 15y > 8540
5y* +9y? >11655 7yY 15y > 9620
6y +5y'® > 7635 2yY +6y"? + y¥ > 7750
y® + 5y > 4575 y? +y? 4y > 2875

Table 4. Theinequalities system which define Y

5. FINAL CONCLUSIONS
The presented agorithm for constructing matrices H, U and V require and
imply a forward dynamic programming approach based on destinations: at destination |,

2< j <n only the costs associated with destinations l,_] can be used.

It isimportant to notice that, the agorithm can be modified such that the iterations
rely on sources.

The agorithm will require m-1 iterations, and in iteration i only costs
associated with sources 1, 2,...,1 will be used.

This modified agorithm could be advantageous when m<n or in similar
situations to the situations discussed in observation 6 d), but implying changes rather in
sources than in destinations.

The main difficulty of the algorithm is that a every iteration is necessary to find
al the vertices of a polyhedron. Although there are many agorithms to enumerate the
vertices [11], [12], [13], this is an “expensive” calculus. However, according to
observation 6, an initia “investment” in constructing matrices H, U and V can be
justified if some parameters are submitted to frequently changes.
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